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Abstract

This paperdemonstratesa methodology tomodel and evaluatethe faulttolerancecharacteristicsof operational

software. The methodology is illustrated through case studies on three different operating systems: the Tandem
GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Measurements are

made on these systems for substantial periods to collect software error and recovery data. In addition to investigat-

ing basic dependability characteristics such as major so_ problems and error distributions, we develop two lev-
eis of models to describe error and recovery processes inside an operating system and on multiple instances of an

operating system running in a dislributed environmenL Based oft the models, reward analysis is conducted to evalu-
ate the loss of service due to software errors and the effect of the fault-tolerance techniques implemented in the sys-

tems. Software error correlation in multicomputer systems is also investigated.

Results show that I/O management and program flow control are the major sources of software problems in

the measured IBM/MVS and VAX/VMS operating systems, while memory management is the major source of

software problems in the TandeJn/GUARDIAN operating system. Software errors tend to occur in bursts on both

IBM and VAX machines. This phenomemm islesspronounced in theTandem system,which can be attributedto

its fault-tolerant design. The fault tolerance in the Tandem system reduces the loss of service due to software
failures by an order of magnitude. Although the measured Tandem system is an experimental system working under

accelerated stresses, the loss of service due to software problems is much smaller than that in the measured
VAX/VMS and IBM/MVS systems. It is shown that the softwme Time To Error distributions obtained _rom data

are not simple exponentials. This is in contrast with the conunon assumption of exponential failure times made in
fanh-tolerant software models. Investigation of error conelatiom show that about 10% of software failures in the

VAXcluster and 20% in the Tandem system occuned conctmeafly on multiple machines. The network-related

software in the VAXcluster and the memory management software in the Tandem system are suspected to be

software reliability bottlenecks for concurrent failures.



I. Introduction

While hardware reliability has improved significantly in the past decades, improvements in software reliability

have not been quite as pronounced. Hardware faults are generally well-understood and e_cient hardware fault

models exist; hardware fault tolerance is relatively inexpensive to implement. Unfortunately none of these is true

for software. It is generally befieved that softwA,-e is the major source of system outages in fault-tolerant systems

[Gray90]. Software faults are logically complex, poorly-understood, and hard to model. Besides, software fault

tolerance is a moving target because software quality keeps changing with design updates and software varies

significantly from system to system. To complicate matters, softwaze interacts with hardware and the environment,

blurring the boundaries between them.

This paper presents a common methodology to model and evaluate the fault tolerance characteristics of opera-

fional software. The methodology is illustrated through case studies on three different operating systems: the

Tandem/GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. A study

of these three operating systen_ is interesting because they are widely used and are representative of the diversity in

the field. The Taudem/GUARDIAN and VAX/VM$ data provide high-level information on software fault toler-

ance. The MV$ data provides detailed information on low-level error recovery. Our intuitive observation is that

GUARDIAN and MVS have a variety of software fault tolerauce features, while VIVIS has less explicit software

fault tolerance.

Ideally, we would like to have measurements on different systems under identical conditions. The reality,

however, is that differences in operating system architectures, instrumentation conditions, measurement periods, and

operational environments make this ideal practically impossible. Hence, a direct and detailed comparison between

the systems is inappropriate. However, it is worthwhile to demonstrate the applications of a modeling and evalua-

tion methodology on different systems. Also, these are mature operating systems which are slow-changing and have

considerable common functionality. Thus, the major results can provide some high-level comparisons that point to

the type and nature of relevant dependability issues.

The methodology proposed consists of the following steps:

(1) Error data reduction and classification -- This step identifies soRware errors/failures and categorizes them by
the affected system functions.



(2) Characterization of error time distributions -- This step obtains empirical disu'ibutions to describe software

error detection and recovery characteristics.

(3) Modeling and reward analysis a This step performs two levels of modeling and reward analysis.

(a) Low-level modeling of error detection and recovery in an operating system: this is illustrated using

the IBM/MVS data.

Co) High-level modeling and evaluation of loss of work in a distributed environment: this is illustrated

using the Tandem/GUARDIAN and VAX/VMS data.

(4) Investigation of error correlations -- This step identifies _t software errors/failures on multiple

instances of an operating system in a distributed environment and their sources.

The next section discusses the related resem_h. Sections 3 and 4 describe measurements and error

classifications. Section 5 characterizes ¢ffiror time distributions. Section 6 builds two levels of models to describe

software fault tolerance and performs reward analysis to evaluate software dependability. Section 7 investigates

errors correiations in distributed environments. Section 8 summarizes this study.

IL Related Research

Software reliability modeling has been studied extensively and a large number of models have been proposed

[Musa87]. However, modeling and evaluation of fault tolerant software systems are not well understoocL A discus-

sion of key issues appeared in [Hecht86]. An analysis of failures and recovery of the MVS operating system running

on an IBM 3081 machine was given in [Velardi84]. The study showed that 25% to 35% of all software failures

were hardware-related and the system failure probability for hardware-related software errors was close to three

times that for all software errors in general [lyer85a]. A detailed analysis of software error and recovery in the

MVS operating system was discussed in [Hsueh87]. More recently a wide-ranging analysis of failures in the MVS

operating system and IBM database management systems is reported in [Sullivan91, Chillarege92].

Analytical modeling of fault tolerant software has been provided by several authors. In [Laprie84], an approxi-

mate model was derived to account for failures due to design faults; the model was used to evaluate a fault-tolerant

software system. In [Scott87], several reliability models were used to evaluate three different software fault toler-

ance methods. Recently, more detailed dependability modeling and evaluation of two major software fault tolerance

approaches _ recovery blocks and N-version programming _ have been proposed [Arlat90].



Although an operating system is a complex software system, little work has been done on modeling and

evaluation of fault tolerance on operating systems. Major approaches for software fault tolerance rely on design

diversity [Avizienis84, Randel175]. However, these approaches are usually inapplicable to large operating systems

due to immense cost in developing and maintaining these software. Still each of the measured operating systems

has distinct fault tolerance features. Single-failure tolerance of the Tandem system -- although not explicitly

intended for tolerating software design faults m provides the GUARDIAN system with a significant level of fault

tolerance. In the MVS system, softwme fault tolerance is provided by recovery management. The philosophy in

MVS is that the programmer who writes a critical system function envisages typical failure scenarios and provides

recovery routines for each failure, so as to prevent a total system loss.

HI. Measurements

For this study, measurements were made on three ditfefent operating systems: the Tandem/GUARDIAN sys-

tem, the VAX/VMS system, and the IBM/MVS system. Table 3.1 summarizes the measured systems. These systems

are representative of the diversity in the field in that they have varying degrees of fault tolerance embedded in the

operating system. The Tandem/GUARDIAN system lXovides recovery from a wide range of software errors via the

"Nonstop" environment. The IBM/MVS system includes robust recovery management to tolerate software-related

errors. The Quorum algorithm (to be discussed later) implemented in the distributed VAX/VMS system running on

a VAXcluste_ makes the VAXcluster fimction as a k-out-of-n fault-tolerant system. The following subsections intro-

duce the three systems and measurements.

Table 3.1. Summary of Systems

HW System SW System

Tandem Cyclone GUARDIAN

VAXcluster

IBM 3081

Architecture Fault-Tolerance

Single-Failure Tolerance

Workload

Distributed SW Development/Testing

VMS Distributed Quorum Algorithm Scientific Applications

MVS Single Recovery Management System Design/Development

A. Tandem/GUARDIAN

The Tandem GUARDIAN system is a loosely-coupled multiprocessor system built for on-line transaction pro-

cessing [Katzman78]. High availability is achieved via single-failure tolerance. With multiple processors running



processpairs, dual interprocessor buses, dual-port device controllers, disk mirroring, and redundant power supplies,

a single failure in a processor, bus, device controller, disk, or power supply can be tolerated. Key software corn-

portents in the Tandem system are processes and messages [Bartlett78]. From a software perspective, a Tandem

system can be viewed as a collection of processes constantly sending and receiving messages. The GUARDIAN

operating system has extensive low-level software error detection mechanisms. GUARDIAN is also capable of

detecting errors using the "I'm alive" message protocoL Each processor periodically sends an "I'm alive" message

to all processors on the system including itself. If the operating system in a processor does not receive the "I'm

alive" message from another processor, it declares that processor to be failed. Detected errors are corrected by

software either at component or system level using redundancy.

The data for this study was obtained from the processor halt log. The processor halt log is a subset of the

TMDS (Tandem Maintenance and Diagnostic System) event log maintained by the GUARDIAN operating system.

This log consists of events generated by tJmm types of sources: the operating system, hardware, and human inter-

vention. A software halt occurs when the operating system in a processor detects a woblem that cannot be resolved.

According to experienced Tandem engineers, software halts are mostly related to real software problems (i.e.,

software bugs). This is plausible considering the extensive hardware-error detection mechanisms in the Tandem

system. Once a software halt occurs in a processor, a memory dmnp is taken from the processor, and the processor

is reloaded. A fix is made later on based on the results of diagnosis using the memory dump.

Measurements were made on five systems m one field system and four in-house systems m for over a total of

five system-years. Software halts are rare in the Tandem system and only one of the in-house systems had enough

software halts for a meaningful analysis. This system was a Tandem Cyclone system used by Tandem software

developers for a wide range of design and development experiments. It was operating as a beta site and was

configured with old hardware. Sometimes the system was deliberately faulted for analysis. As such it is not

representative of the Tandem system in the field. The measured period was 19 months (from July 1990 to January

1992).

B. VAX/VMS



The VAX/VMS error data was collected from two DEC VAXclusters. A VAXcluster is a distributed com-

puter system consisting of several VAX machines and mass st_age controllers. These machines and controllers

(nodes) are connected by the Computer Interconnect (CI) bus organized as a star topology. Features of the VAX-

cluster include: nodes communicating based on a message-oriented interconnect and memory-to-memory block

transfers, sharing of disk storage through the network (CI bus and ports), and running a distributed version of the

VAX/VMS operating system [Kronenberg86].

The VAX/VMS distributed operating system provides sharing of resources (devices, files, and records) among

users. Major components to provide resource sharing include the file and record management services, disk class

driver, lock manager, connection manager, and SCA software [Kronenberg86]. These routines manage the cluster-

wide resource sharing and communications. They are also responsible for coordinating the cluster members and han-

dling recoverable failures in remote nodes. For the purpose of this study, we will call all these software components

I10 management routines.

One of the VAXcluster design goals is to achieve high-availability by integrating multiple machines in a sin-

gle system. The Quorum algorithm [Kronenberg86] implemented in the distributed VAX/VMS system makes the

VAXcluster function as a k-out-of-n system. Each operating system running in the VAXcluster has a parameter

called VOTES and a parameter called QUORUM. If there are n machines in the system, each operating system usu-

ally sets its QUORUM to Ln/2+ 1 J. The parameter VOTES is dynamically set to the number of machines currently

alive in the VAXcluster. The processing of the VAXclaster proceeds only if VOTES is greater than or equal to

QUORUM. Thus, the VAXcluster functions llke an In/2+ 1 J-out-of-n system.

The first system, VAX1, consisted of seven machines and four controllers. The data collection periods for the

different machines in VAX1 varied from 8 to 10 months (during October 1987 -- August 1988). The cumulative

measurement time was 5.5 machine years. The second system, VAX2, consisted of four machines and one con-

troller. The data collecti6n period was 27 months (January 1989 -- March 1991). There were also 16 other small

machines connected to VAX2 through an Ethemet during the measured period. Measurements were also made on

these machines. The cumulative measurement time for VAX2 was 25.7 machine years. The two systems were used

to provide service for scientists, engineers, and students for their research during the measured periods. The source



of the error data was the ERROR_LOG files produced by the VAX/VMS operating system.

C. IBM/MVS

The MVS is a widely used IBM operating system. Primary features of the system are report_l to be efficient

storage management and automatic software error recovery. In the MVS environment errors are detected by both

hardware and software facilities. The hardware detects conditions such as memory violations, program errors (e.g.,

arithmetic exceptions), and addressing errors. The softwm-e detects more complex error conditions. The data

management and supervisor routines ensure that valid data are processed and non-conflicting requests are made.

For example, these routines can detect an incorrect parameter specification in a system macro, or a supervisor call

issued by an unauthorized program.

The MVS system attempts to correct software errors using recovery routines. The philosophy in the MVS is

that for each major system function, the programmer envisages possible failure scenarios and writes a recovery rou-

tine for each. However, it is the responsibility of the instAnaaon (or the user) to write recovery routines for other

programs. The installation can improve the error detection capability of the system by means of a software facility

called Resource Access Control Facility (RACI_. The RACF is used to build detailed profiles of system software

modules. These profiles are used to inspect the comect usage of system resources. The user can also employ other

software facilities to detect the occurrences of selected events. In addition, the operator can detect some evident

error conditions and decide to cancel or restart a job.

The detection of an error is recorded by an operating system module. The software record contains the infor-
/

marion about the event that caused the record to be generated and a 12-bit error symptom code describing the reason

for the abnormal termination of a program. The total number of implemented error codes is more than 500.

Measurements were made on an IBM 3081 mainframe running the IBM/IVlVS operating system. The system

consisted of dual processors with two multiplexed channel sets. Time-staraped, low-level error and recovery data on

errors affecting the operating system functions were collected. During the measured period, the system was used

primarily to provide a time-sharing environment to a group of engineering communities for their daily work on sys-

tem design and development. The measurement period was one year.
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IV. Error Classification

In this section we identify software errors by processing the raw data and categorize these errors by the

affected system function. A common step in data processing for all these systems is the data coalescing. In a com-

puter system, a single problem commonly result in many repeated error observations occurring in rapid succession.

To ensure that the analysis is not biased by repeated observations of the same problem, all error entries which have

the same error type and occur within a short time (usually five minutes) interval of each other should be coalesced

in data processing. However, the coalescing algorithms used in the three systems are not identical. Also, the error

classification is different for the three systems. This is because these systems have different hardware and software

architectures and error detection mechanisms. In the following discussion, major sources of software problems for

these systems are identified by statistical analysis. This information can only be obtained from mensorement-based

analysis and can be used in designing techniques for software fault tolerance.

A. Tandem/GUARDIAN

The first step of the analysis was to identify event clusters for individual operating systems using the software

failure data from the processor halt log. An event cluster consists of a sequence of related events ending with an

event representing the recovery of a failed operating system. An event cluster represents an operating system failure

and identifies the time period during which the operating system is unavailable. We also created event clusters

using the non-software failure data from the processor halt log in a similar fashion. Further details of the data pro-

cessing are given in [l.ee91].

The processor halt log also provides information about the instruction processing environments (i.e., apparent

causes of software halts from the operating system perspective and processes which were executing) prior to the

occurrence of software halts. Table 4.1 shows the apparent causes of the collected software halts. The codes A, B,

C, and D in the third column of the table will be used to refer to the cause later. The table shows that software halts

occurred most frequendy due to problems in accessing the system disk. Each processor in the system has its own

copy of the kernel in its main memory, but it relies on the system disk, which is accessed through either processor 0

or 1, for all additional operating system related procedures and files. As a result, a problem in accessing the system

disk can cause software halts in multiple processors on the system. This explains why it was the most frequent

8



Table4.1. Apparent Cause of Software Halt (Tandem)

Software Subsystem # Events Cause Breakdown # Events

Process Control 32

Memo_Managem_t 7

Message System 14

Processor Control 1

(A) illegal address reference by

interrupt handler or system process

_) arithmetic overflow occur to

interrupt handler or system process
((2) memory manager read errs,

potentially related to system disk access

(D) pro_r_ internal error

4

18

1

(A) page or byte unlock e_or 1

(B) illegal attempt to deallocate segment or

bad segment table entry 3

(C) unexpected page fault or
too many en-ors on a processor switch 2

_D) physical-page table and segment page table mismatch 1

(A) processor unsynchronized 1

(B) unable to send "I'm alive" message to itself 6

_C_ declared down by the other live processors 7

instruction failure or sequence error on boot 1

(A) uncorrectable memory error I

(13) software encounter unexpected problem

Hardware-Related 21

Application Software 4
Unknown 3

during recoveryfi'om powcx failure

_C'_ unexpected interrupt or trap

15

5

cause of the software halts. Problems with the system disk can be caused by software faults or double component

failures such as near-coincident halts in processors 0 and I.

The second most frequent cause of softwarehaltswas an unexpected problem such as insufficient status infor-

marion found by software during a recovery from a power failure. This could be due to design faults in the software

that handles such recovery. The third most frequent cause of software halts was an illegal address reference by an

interrupt handler or a system process, x Illegal address references can occur due to underlying software faults or

undetected hardware errors. Other frequent causes of software halts were failures in sending or receiving the "I'm

alive" message. The underlying cause of this can be an operating system failure, a processor hardware failure, or

interrupt bursts from faulty hardware. The interrupt bursts would interfere with the message interrupt handling. The

"I'm alive" protocol allows problems to be identified by the operating system on which the problem occurs, or by

_System processes consist of a small number of privileged processes. Examples are the monitor process, the memory mmager, the operator

process, and the I/O processes.



other operating systems. Obviously this protocol plays an active role in detecting processor software halts at a high

level.

Table 4.2 shows a breakdown of the software halts based on the processes which were executing prior to the

occurrence of software halts. The process that was executing points to the likely problem source. The third column

of the table lists the cause of the halt (Table 4.1 nomenclaaae). "Non-process" refers to no specific process and

indicates that an interrupt handler or special operating system procedure such as an idle loop was executing. The

system monitor runs in each processor on the system. This process handles housekeeping functions and initiates

process creation and deletion within a processor. Like the system monitor, the memory manager runs in each pro-

cessor. This process services special requests from page-fault interrupt handler to bring needed pages into processor

memory from disk. "All others" refers to a collection of about twenty processes. No more than two software halts

occurred while each of these processes was executing.

The table clearly shows that software halts occurred mostly frequently while the memory manager process

was executing to provide services to user applications. The most frequent cause of these halts was problems in

accessing the system disk. The second most frequent cause was illegal address references by the memory manager

process. The occurrence of software halts due to this cause did not show specific pattern. The fact that there were

eight softwaxe halts due to this cause (Tables 4.1 and 4.2) indicates that these are likely to be due to underlying

software faults.

B. VAX/VMS

Table 4.2. Active Process at Software Halt (Tandem)

Process # Events Cause Breakdown # Events

Non-process 22 memory management (C) 2

message system (A, B, C) 6

hardwm'e-related (A, B) 13
unknown 1

System Monitor 4 Im_cessor control I

memory mam_ement (B) 3

process control (A, C) 27

memory management (D) 1

hardware-related (C") 4

Memory Manager 28

Unknown 4

All Others 24

10



Thetime-stamped VAX log contained information on both errors and failures. An error was defined as an

abnormality in any component of the system. If an error led to a termination of the system service on a machine, it

was defined as a failure. A failure was identified by a reboot report following one or multiple error reports. Based

on the information provided by the error logs, errors were classified into three categories: hardware, software, and

unknown. Hardware errors included five different types: CPU, memory, disk, tape, and network errors. Errors of the

same type occurring within five minutes of each other were coalesced into a single error event. Details of the meas-

urements and data processing can be found in [Tang92a].

Software errors were identified from "bugcheck" reports in the log files and divided into three types:

(1) Control -- Problems involving program flow control or synchronization. For example, "Unexpected system

service exception", "Exception while above ASTDEL or on interrupt stack", and "Spinlock(s) of higher rank

already owned by CPU".

(2) Memory -- Problems related to memory management or usage. For example, "Bad memory deailocation

request size or address", "Double deallocation of memory block", "Page fault with IPL too high", and "Kernel

stack not valid".

(3) I/O -- Inconsistent conditions detected by YO management routines. For example, "Inconsistent I/O data

base", _RMS has detected an invalid condition", "Fatal error detected by VAX port driver", "Invalid lock id",

and "Insufficient nonpaged pool to remaster locks on this system".

Table 4.3 shows the software error frequency, percentage, and associated failure probability, by error type for

the measured VAX/VMS systems. The failure probability is defined as the failure frequency divided by the error

frequency. It is seen that control errors are the dominant type of error (57%). However, closer examination of the

data shows that some of control errors were related to network errors, which probably occurred in I/O management

routines. These errors should be regarded as I/O errors. That is, the actual percentage of I/O errors is higher than

that (36%) in the table. Thus, for the measured VAX/VMS systems, major software problems are from program

flow control and I/O management.

The table shows that the failure probability of software errors is high (0.76). This is in contrast with the low

failure probability of hardware errors (<0.01) shown in [Tang92a]. In the two VAXclusters, software failures

11



constitute approximately 23% of all machine failures. That is, the impact of software failures on system dependabil-

ity for the measured systems is significant.

Table 4.3. Statistics for VAX/VMS Software Errors

Type Control Memory I/O All

Error Frequency 97 12 60 169

Percentage 57.4 7.1 35.5 100

Failure Probability 0.86 0.58 0.68 0.76

C. IBM/MVS

For the MVS system, two levels of data coalescing were performed [Hsueh87]. F'n'st, identical error entries

which occurred within five minutes of each other were coalesced into a single record. Second, different error

records occurring in close proximity in time (i.e., within 15 minutes of each other) were merged into a single error

group. The first step eliminates multiple identical entries due to the same problem. The sectmd step provides a

mechanism to identify error bursts containing multiple but different error records. The reduced software errors were

then classified into the following eight types:

(1) Control (CTRL) m invalid use of control statements or invalid supervisor calls

(2) Deadlocks (DLCK) -- endless loops or wait states, or violation of system- or user-defined time limits

(3) I/O & Data Management (IK)) -- errors occurring during I/O management or during creation/processing of

data sets

(4) Storage Management (SM) -- errors in storage allocation/de, allocation or in virtual memory mapping

(5) Storage Exceptions (SE) _ addressing of nonexistent or innecessible memory locations

(6) Programming Exceptions fiE) -- program errors (e.g., arithmetic overflow) other than storage exceptions

(7) Others (OTHR) -- errors which don't fit any of the above categories

(8) Multiple Errors or Error Bursts (MULT) -- error bursts consisting of different types (listed above) of errors

Table 4.4 lists the frequencies of the software errors defined above. The table shows that more than a half

(52.5%) of the software errors were I/O & data management errors, i.e., the major source of software errors is I/O &

data management. A significant percentage (17.4%) of the errors were classified as multiple errors.

12



Table4.4. Statisticsfor IBM/MVS Software Errors

D. Summary

Type of Errors
Control
Deadlock

I/O & Data Management
Program Exceptions
Stor_e Exceptions
Storage Management
Others

Multiple Err_
Total

Frequency
213

23

1448

65

149

313

66

481

Percent

7.72
0.84

52.50
2.43
5.40

11.35
2.32

17.44

2758 100.00

In the IBM/MVS system, the major som'ce of software errors was I/O & data management. This is in agree-

ment with the results from the VAX/VMS system whm,e program flow control and I/O management were the major

sources of software enxx_. However, memory management was the major source of software halts in the

Tandem/GUARDIAN system. This difference is mainly attributed to the different hardware and software architec-

tures among these systems. In the VAXcluster, programs highly rely on resource sharing through communications

across the network. A lot of problems arose from the network related hardware and software which are suspected to

be a reliabifity bottleneck. In the Tandem system, memory management implicitly involves lots of activities includ-

ing inter-process communications throughin_'-proceas_" buses as well as disk accesses because each processor

controls a subset of the disks in the system and files are distributed to all disks. As a result, there is a more chance

of software halt occurring due to memory management.

V. Time To Error Distributions

Actual Time To Error CITE) distributions are essential in evaluating software dependability. Often, for sim-

plicity or due to lack of information, TTE or Time Between Error (TBE), and Time To Recovery (T'I_) are

assumed to be exponentially distributed [ArlaO0]. An early measurement-based study showed that the software

Time Between Failures (TBF) in a VM/CMS system had a Weibull distribution [Iyer85b]. This section investigates

TTE (or TBE) and TTR distributions in the measured systems.

A. TBE Distributions

13



Before presenting TBE distributions, we first explain how a TBE distribution is obtained from a multicom-

puter system such as the VAXcluster or Tandem system. We use the VAXcluster to illustrate the procedure. In a

VAXcluster, all machine members are working in a similar environment and running the same version of the VMS

operating system. If the VAXcluster is viewed as a single resource, then every software error on all machines can

be sequentially ordered and a distribution can be constructed. In this way, the whole system is treated as a single

entity in which multiple instances of an operating system are running concutr_tly. The constructed TBE distribu-

tion describes the software error characteristics for the whole system. We will call this distribution the multicom-

puter software TBE distribution.

Figures 5.1, 5.2, and 5.3 show the empirical TBE or TTE distributions fitted to analytic functions using SAS

[SAS85] for the three measured systems. All these distributions failed to fit simple exponential functions. The

fitting was tested using Kolmogorov-Smirnov test or Chi-square test at 0.05 significance level. The two-phase

hyperexponential distribution provided satisfactory fits for the VAXcluster and Tandem multicomputer software

TBE distributions. An attempt to fit the MVS TBE distribution to a phase-type exponential distribution led to a

large number of stages. As a result, the following multi-stage gamma distribution was used:

f (t)= _, a_g(t;oq,st) (5.1)
i-I

where ai'dO, _,ai=l, and
i=l

0 t <$,

g (t: ct, s) = (5.2)

F-_(t-s) _'le-0-*) t> s 6

A five-stagegamma distributionprovideda satisfactoryfit.

The resultsshow thatthe multicomputer softwareTBE distribution(VAX/VMS and Tandem/GUARDIAN)

can be modeled asa probabilisticcombinationof two exponentialrandom variables,which shows thatthereare two

dominant errormodes. The highererrorrate,),,z,with occurrenceprobabilityct2,capturesboth the errorbursts

(multipleerrorsoccurringon thesame operatingsystem withina shortperiodof time)and concurrenterrors(multi-

ple errorson differentinstancesof an operatingsystem which interactwith each other)on thesesystems. The lower

errorrate,XI, with occurrenceprobability(xl,capturesregularerrorsand providesinterbursterrorrate.
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The VAX1 data (Figure 5.2) shows that a significant portion of the TBE instances (42%) are less than one

day. This is in agreement with the existence of multiple errors (i.e., error bursts) in the IBM/MVS system. How-

ever, most of the VAXcluster TBE instances in the bursts are from a half hour to several hours which is longer than

those instances in the IBM/MVS. A few TBE instances in VAX1 are less than a half hour. The software errors

associated with these instances occurred on different machines. This indicates that some errors are correlated (this

issue will be discussed further in section 7). Recall that we have used a coalescing algorithm to merge error reports

within five minutes of each other. However, after this processing, there are still error burst phenomena.

These error bursts may be repeated occurrences of the same software problem, or multiple effects of an inter-

mittent hardware fault on the software. Actually, software error bursts have been observed in laboratory experi-

ments reported in [Bishop88]. The study showed that, if the input sequences of the software under investigation are

correlated (rather than being independent), one can expect more "bunching" of failures than those predicted using a

constant failure rate assumption. In an operating system, input sequences (user requests) are highly likely to be
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correla_._l. Hence, a defect area can be triggered repeatedly.

Figure 5.3 shows that the probability of error bursts in the Tandem system (0.13) is lower than that in the

VAXcluster (0.32). That is, software halt bursts in the Tandem system are not as pronounced. This can be attri-

buted to differences in the quality of software and error detection mechanisms. The Tandem system is designed for

fault tolerance from the scratch, and the GUARDIAN operating system is believed to be more robust and less likely

to cause repeated problems in a short time. In addition, the Tandem system is equipped with extensive hardware

error detection mechanisms. Most hardware errors in the Tandem system are detected by hardware and corrected by

software, and hence there is less chance that intermittent hardware errors cause repeated software errors.

It is clear that the measured TBE (or TIE) is not exponentially distributed. This result is in contrast with the

typical assumption made in software dependability modeling [ArlaO0]. The results do, however, conform with the

previous measurements on IBM [Iyer85b] and DEC [Castillo81] machines. Several reasons for this non-exponential

behavior, including the impact of workload, were documented in [CastilloS1].

B. TTR Distributions

Figure 5.4 shows the spline-fit for the TTR distribution of multiple errors in the MVS system. The figure also

shows an three-phase hypereXlxmential function to approximate the distribution. Figures 5.5 and 5.6 plot the empir-

ical software TTR distributions for VAXl and the Tandem system. Due to their peculiar shapes, we provided the

raw distributions. Since most MVS software errors do not lead to system failures, the TIR for multiple errors,

Figure 5.4. MVS Multiple Error TTR Distribution (fitted)

f (t)
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which take the longest time to recover among all software error types in the MVS system, is still short. Most TTR

instances are less than 10 minutes; suggesting that most often reload (at least temporarily) cleared the problems.

In VAX1 (Figure 5.5), most of the TYR instances (85%) are less than 15 minutes. This is atlributed to those

errors which are recovered by on-line recovery or automatic reboot without shutdown repair. However, some TTR

instances last as long as several hours (the maximum is about 6.6 hours). These failures are, in our experience,

probably due to a combination of software and hardware problems.

Figure 5.6 shows that the software recovery time in the Tandem system is longer than that in the VAXcluster.

This is most likely due to the human factor in system maintenance. If a software halt occurs in the Tandem system,

a memory dump is taken and then the halted processor is reloaded. Most software halts occur on one operating sys-

tem. Since the system can tolerate a single operating system failure, operations tend to collect on-line information

for diagnostic uses before attempting a recovery. This explains why the recovery time was longer in the Tandem

system.

Typically, analytical models assume exponential or constant recovery times. Our results show that this does

not apply generally. We have seen that all three TTR distributions are not simple exponentials. For the MVS sys-

tern, since the recovery is usually quick, a constant recovery time assumption may be suitable. For the VAXcluster

and Tandem systems, neither exponential nor constant recovery time can be assumed. More complex "multi-mode"

functions may be needed to model these TI'R distributions.

To summarize, significant software err¢_ were found to occur in bursts on both IBM and VAX machines.

This phenomenon is less pronounced in the Tandem system, which can be attributed to its fault-tolerant design. The
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Figure 5.5. VAX1 Software TTR Distribution
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measuredsoftware TBE and TTR distributions failed to fit simple exponential functions. This is in contrast with the

common assumption of exponential failure times made in analytical modeling of software dependability. It was

shown that a multicomputer software TBE distribution can be modeled by a two-phase hyperexponential random

variable: a lower error rate captures regular errors, and a higher error rate captures error bursts and concurrent

errors on multiple machines.

VL Modeling and Analysis

This section presents two levels of modeling and reward analysis to describe and evaluate the dynamic

software dependability behavior. Low-level modeling focuses on e_or detection and recovery inside an operating

system, while high-level modeling and reward analysis deals with distributed systems where multiple instances of

operating systems interact. The IBM/MVS data is suited for illustrating the lower-level modeling, while the

Tandem/GUARDIAN and VAX/VMS data are suited for illustrating the higher-level modeling and reward analysis.

The two-level modeling and reward analysis not only allows us to evaluate software fault tolerance and software

dependability, but also provides a framework to model complex software systems in a hierarchical fashion. We first

presents the high-level modeling and reward analysis, and then presents the low-level modeling.

A. Distributed Operating System

In distributed environments such as the Tandem and VAXcluster systems, multiple instances of an operating

system are running, and these instances form a single overall software system. This subsection discusses a high-

level modeling to analyze this complex overall software system. Each instance of an operating system is treated as

a software element of the overall software system, and software fault tolerance is discussed at a high level. The

modeling is illustrated using the Tandem/GUARDIAN and VAX/VMS data.

The Tandem/GUARDIAN operating system closely interacts with hardware to provide software fault tolerance

at system level. The GUARDIAN is robust and is equipped with extensive mechanisms to detect errors on

software. Built-in single-failure tolerance allows the system to tolerate detected software errors using redundancy at

system level. In a VAXcluster, the system-level software fault tolerance is provided by the Quorum algorithm. The

VAXclustex can function as a k-out-of-n system.
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Figure6.1.ModelStructure

We constructed two-dimensional continuous-time Markov models using the software error dam from the Tan-

dem and VAXcluster systems. Figure 6.1 shows the model smacture. In the model the state Si.j represents that,

among a total of n systems, i a_e in an error state, and j are in a failure state, and (n - i - j) are running error-free.

The state transition probabilities were estimated from the measured dam. For example, the state Wansition probabil-

ity from state Si,j to state Sid+1 was obtained from

observed number of transitions from state Si,j to state Sx.j+t
(6.1)

P(i, j3.(t,j+l) = observed number of transitions from state Sij

To quantify the impact of software errors on overall software dependability, we define two reward functions

for the Markov models. The first applies to a non single-failure tolerant system such as the VAXcluster and the

second applies to a single-failure tolerant system such as the Tandem system.

NSFT (No Single-Failure Tolerance) Reward Function:

We first define the reward function for a non single-failure tolerant system. In this case the system allows

recovery from minor errors, but a major failure results in degradation. Given a lime interval AT, a reward rate for a

single operating system is defined as

r(AT) = W(AT) / zLT (6.2)

where W(AT) denotes the useful service time provided by the operating system during the AT and is calculated by
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iT in normal state
W(AT) = T - cx in error state (6.3)

in failure state

where c is the number of raw errors occurring on the operating system during the AT and % is the mean recovery

time for a single error. Thus, one unit of reward is given for each unit of time when the operating system is in the

normal state. In an error state, the reward loss depends on the amount of time the operating system spends on error

recovery. (If AT is less than cx, W(AT) is set to 0.) In a failure state, the reward is zero. In a distributed environ-

ment, the reward is also inversely proportional to the number of failed systems.

With the above definition, the reward rate for state Si.) in the model (Figure 6.1) is obtained from

n - i._x - J (6.4)
rid = n

where _ is the average number errors occurring in an operating system, per unit time, in state Std, and n is the total

number of systems. Here each operating system failure causes degradation.

SFT (Single-Failure Tolerance) Reward Function:

The Tandem system allows recovery from minor errors and also a single major failure causes no loss of ser-

vice in the Tandem system. To describe the built-in single-failure tolerance, we modify the reward rate (Equation

6.4) as follows:

ri,j =

n -i"_z-j ifj = Oor j =n
n

n -i@c-j+ 1
if 1 _] _ (n-l).

n

(6.5)

Here we assume that the system can tolerate a single operating system failure (i.e., a single processor software halt)

without noticeable performance degradation. Thus the first failure causes no reward loss. For the second and subse-

quent failures, the reward loss is proportional to the number of these failures.

Given the Markov reward model described above, the expected steady-state reward rate, Y, can be estimated

from [Trivedi92]

r = _, ri.j'_i./ (6.6)
S_,jeS

where S is the set of valid states in the model and _,j is the steady-state occupancy probability for state S_,j. The
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steady-staterewardraterepresentstherelative amount of useful service the system can provide per unit time in the

long run, and can be regarded as a measure of software system service capability. The steady-state reward loss rate,

(1 - F), represents the relative amount of service lost per unit time due to software errors in the long run. If we

consider a specific group of errors in the analysis, the steady-state reward loss quantifies the performance loss due to

this group of errors.

Table 6.1 shows the estimated steady-state reward loss for the Tandem and VAXcluster systems. The table

shows the reward losses due to software as well as non-software problems. It is seen that software problems

account for 27% of the service loss incurred by all problems in the Tandem system, while they account for 12% of

the service loss incurred by all problems in the VAXcluster system. This indicates that software is not a dominant

source of service loss in the measured VAXcluster system, while software is a significant source of service loss in

the measured Tandem system. A census of Tandem system availability [Gray90] has shown that, as the reliability

of hardware and maintenance improves significantly, software is the major source (62%) of outages in the Tandem

system. Our results corroberate this finding. 2 Although the measured Tandem system was an experimental system,

it has a smaller reward loss Coy an order of magnitude) due to software problems. The same observation was made

for the reward loss due to non-software problems. These observations demonswate the high dependability of the

measured Tandem system. In the VAXcluster, closer examination shows that most service loss due to non-software

was actually incurred by hardware.

What Does Single-Failure Tolerance Buy?

Table 6.1. Steady-State Reward Loss

System Measure Software Non-Software Total

Reward Loss 0.00006 0.00016 0.00022
Tandem

Percentage 27.3 72.7 100

Reward Loss 0.00077 0.00"565 0.00642
VAXcluster

Percentage 12.0 88.0 100

2Note that it it ina_ to directly compare our number with Gray's because Gray', is an aggregate of many systems and ours is a
meamremeat on a single system.

21



The Tandem/GUARDIAN data allows us to evalual¢ the impact of built-in software fault tolerance on system

dependability and to relate loss of service to different software components. We performed reward analysis using

the two reward rates defined above (SFT and NSFT) to evaluate the reduction in reward loss (loss of service) due to

the software fault tolerance. The reward rate defined in Equation 6.4 allows us to determine the reward loss assum-

ing no SFT. The reward rate defined in Equation 6.5 measures reward loss under SFT. The ratio of the two

rewards estimated using these reward rate definitions determines the gain due to SFF. We evaluated the impact of

seven different groups of halts on overall software dependability in the Tandem system: all software halts, the five

mutually exclusive subsets of software halts (Table 4.4), and all non-software halts.

Table 6.2 shows the estimated steady-state reward loss due to the seven groups of halts for the two reward

measures. The first row of the table shows that single-failure tolerance of the measured Tandem system reduced the

loss of service incurred by all softwmm halts by 96%, which clearly demonstrates the effectiveness of this fault toler-

ance mechanism against software failures. The table also shows that memory management is a potential dependabil-

ity bottleneck in the Tandem system: the software halts which occurred while the memory manager process was

executing account for 50 % of the loss of service incurred by all software halts (with SFT). The percentage was 25

with NSFT. A higher percentage of reward loss with SFT, compared with that with NSFT, indicates that the

software halts which occurred while the memory manager process was executing tended to occur near-coincidentally

on multiple operating systems.

The software halls under _all others _ account for 65 % of the loss of service incurred by all software halts

with NSFT. However, their real contribution to the measured system (with SFT) is about 17 %. This indicates that

Table 6.2. Steady-State Reward Loss (Tandem)

Source of Dam

all s/w halts

s/w halts under non-process

s/w halts under system monitor

s/w halts under memory manager
s/w halts under unknown

s/w halts under all others

with SFT

Reward Loss Percentage

0.O0006 100 %

0.00002 33 %

0.0 0 %

0.00003 50 %

0.0 0 %

0.00001 17 %

with NSFT

Reward Loss Percentage

0.00136 100 %

0.00012 9 %

0.00000

0.00034 25 %

0.00000

0.00088 65 %

Reward LoSSsFr

Reward LOSSNsFr

4.4 %

16.7 %

0%
8.8 %

0%

1.1%

all non-s/w halls 0.00016 0.00206 7.8 %
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these were mostly single operating system failures. The high szeady-suue reward loss with NSFT indicates that it

took longer to recover from some of these halts. Interpretation of the impact of the software halts under "non-

process" is less interesting because many of these were due to unexpected problems found by software during

recoveries from power failures. This implies that the affected processors were already down due to power failures.

Some of these halts occurred in two or three processors at almost the same time. There were not enough software

halts under the system monitor of "unknown" to provide meaningful interpretations.

The last row of Table 6.2 shows that non-software halts caused more loss of service than software halts. This

can be attributed to two reasons. First, some non-sol, ware halts which occur due to permanent hardware faults are

resolved by replacing the faulty hardware, resulting in long recovery times and more loss of service. Second, non-

software halts can occur due to environmental or operational faults. An environmental or operational fault can

potentially affect all lxocessors in the system. Both the first and last rows of Table 6.2 show that, although the

measured Tandem system was in a high-stress environment, the steady-state reward loss is small (with SFT). This

reflects the high dependability of the measured system. The last row also shows that single-failure tolerance

reduced the loss of service incurred by all non-softwaz'e halts by 92%. The percentage is slightly lower than that for

software halts, which is attributed to the non-software halts, due m environmental or operational faults, which

affected the whole system.

B. Single Operating System

This subsection discusses a low-level modeling to describe error detection and recovery inside an operating

system. The methodology is illustrated using the IBM/MVS data. The MVS operating system provides software

fault tolerance through recovery management. It also provides a flexible platform to build additional software fault

tolerance at user level. Recovery routines in the MVS operating system provide a means by which the operating

system prevents a total loss on the occurrence of software errors. When a program is abnormally interrupted due to

an error, the supervisor routine gets the control. If the problem is such that further processing can degrade the sys-

tem or destroy data, the supervisor routine gives the control to Recovery Termination Manager (RTM), an operating

system module responsible for error and recovery management. If a recovery routine is available for the interrupted

program, the RTM gives the control to this routine before it terminates the program. The purpose of a recovery
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routine is to free the resources kept by the falling program, to locate the error, and to request either a retry or the

termination of the program. Recovery routines are generally provided to cover critical MVS functions. However, it

is the responsibility of the installation (or the user) to write recovery routines for other programs.

More than one recovery routine can be specified for the same program. If the current recovery routine is

unable to restore a valid state, the RTM can give the control to anothe_ recovery routine, if available. This process

is called percolation. The percolation process ends if either a routine issues a valid retry request or no more

recovery routines are available. In the latter ease, the program and its related subtasks are terminated. If a valid

retry is requested, a retry is attempted to restore a valid stale using the information supplied by the recovery routine

and gives the conu'ol to the program. In order for a retry to be valid, there should be no risk of error recurrence and

the retry address should be properly specified. An error recovery can resdt in the following four situations:

(1) Resume operation (Resume Op) -- The system suceessfidly recovered from the error and returned the con-

trol to the interrupted program.

(2) Task Termination (Task term)--- The program and its relsa0ed subtasks are terminated, but the system
didn't fail.

(3) Job Temnination (Job term)--- The job in control at the time of the ezror is aborted.

(4) System Damage (System failure)--- The job or task, which was terminated, is critical for system operation.

As a result of the termination, a system failure occurs.

Using the collected error and recovery data, we constructed a continuous-time Markov model that provides a

complete view of the measured MVS operating system from the error detection to the recovery. The states of the

model consists of the eight different types of error states and the four states resulting from error recoveries. Figure

6.2 shows the model. The norma/state represents that the operating system is running error-free. The transition

probabilities wee estimated from the measured data using Equation 6.1. Note that the system failure state is not

shown in the figure. This is because the occurrence of system failure was rare and the number of observed system

failures was statistically insignificant.

Table 6.3 shows the waiting time characteristics of the normal and error states in the model. 3 The table shows

3 The waiting time for state i is the time that the system spends in state i before making a transition. Some researchers
have used the team sojourn time for this measure.
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Figure 6.2. Software Error/Recovery Model
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State

Normal
CTRL

DLCK

I/o
PE

SE
SM

OqTqR

MULT

Table 6.3. Waiting Time

# of Mean Waiting Time

obs (in seconds)

2757 10461.33

213 21.92

23 4.72

1448 25.05
65 42.23

149 36.82

313 33.40

66 1.86

481 175.59

Standard
Deviation

32735.04

84.21

22.61

77.62

92.98
79.59

95.01

12.98

252.79

that the duration of a single error is typically in the range of 20 to 40 seconds, except for deadlock (DLCK) and

"others" (OTHR). The table also shows that errors of the type "others" (OTHR) are relatively insignificant because

their average duration is less than 2 seconds. The average recovery time from a program exception is twice as long

as that from a control error (21 seconds versus 42 seconds). This is probably due to the extensive software involve-

ment in recovering fi'om Ixogram exceptions. Table 6.3 clearly brings out the importance of incorporating multiple

errors (or error bursts) into a system model. The average duration of a multiple error is at least four times longer

than that of any types of single error.

An error recovery can be as simple as a retry or can be more complex requiring several percolations before a

retry. The problem can also be such that no relry or percolation is possible. Figure 6.2 shows that about 83.1% of

all retries are successful. The table also shows that the operating system attempts to recover from 93.5% of I/O and

data management errors and 78.4% of control related errors by retries. These observations indicate that most I/O

and control related errors are relatively easy to recover from, compared to the other types of errors such as deadlock

and storage errors. Also note that "no percolation" occurs only in recovering from storage management errors. This

indicates that storage management errors are more complicated than the other types of errors. The problem can also

be such that no retry or percolation is possible.

Model Behavior:

The dynamic behavior of the modeled operating system can be described by various probabilities. Given the

irreducible semi-Markov model of Figure 6.2, the following steady-state probabilities were evaluated. The deriva-

tions of these measures are given in [Howard71].
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(1) transition probability (_j) -- given that the system is now making a transition, the probability that the tran-

sition is to state j

(2) occupancy probability (_j) -- at any instant of time the probability that the system occupies state j

(3) mean recurrence time (Oj) -- mean recurrence time of state j

The occupancy probability of the normal state can be viewed as the operating system availability without

degradation. The state transition probability, on the other hand, represents the dynamic behavior of the error detec-

tion and recove_ry processes in the operating system. Table 6.4(a) lists the state transition probabilities and occu-

pancy probabilities for the normal and error states. Table 6.4(b) lists the state transition probabilities and the mean

recurrent times of the recovery and result states. A dashed line in the table indicates a negligible value (less than

0.00001). Table 6.4(a) shows that the occupancy probability of the normal state in the model is 0.995. This indi-

cates that in 99.5% of time the operating system is running error-free. In 0.5% of time the operating system is in

error or recovery states. Table 6A(b) shows that in more than half of this time (i.e., 0.29% out of 0.5%) the operat-

ing system is in the multiple error state. An early study on the MVS error/recovery showed that average reward rate

for the software error/recovery state was 0.2736 [Hsueh88]. Based on this reward rate and the occupancy probabil-

ity for the error/recovery state obtained above (0.005), we estimate that the steady-state reward loss is 0.00363

which is larger than that estimated for the Tandem and VAXcluster systems.

Table 6.4. Error/Recovery Model Characteristics

Normal Error state

Measure state CTRL DLCK I/O PE SE SM OTHR MULT

0.2474

0.9950

0.0191

0.00016

0.0020 0.1299

0.00125

0.0060 0.0134 0.0281 0.0057

0.000098 0.000189 0.00036

(a)

0.0431

0.002913

Measure Retry

..x. 0.1704 0.0845
O 4.25 8.55

Recovery state
Percolation No-Percolation

0.0030

241.43

* - in hour

(b)

Result

Resume op Task term .Job term

O.1414 0.0712 0.0348

5.11 10.16 20.74
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By solvingthe model (Figure 6.2), it is found that the operating system makes a transition every 43.37

minutes. Table 6.4 shows that 24.74% of all transitions made in the model are to the normal state, 24.73% of them

are to error states (obtained by summing all the n's for all error state, s), 25.79% of them are to recovery states, and

24.74% of them are to result state,s. Since a transition occurs every 43 minutes, we estimate that, on average, a

software error is detected every three hours and a successful recovea'y (i.e., reaching the "resume op" state) occurs

every five hours. This indicates that nearly 43% of all software errors result in task/job termination. Although very

few (statistically insignificant numbe_r) of the task or job terminations lead to system failures, they do affect the user

perceived reliability and availability of the system because the operating system recovers from more than 40% of the

software errors via job or task termination. As a result of the termination, users may have to re-initiate the

jobs/tasks. For long duration jobs/tasks, the performance loss (i.e., the loss of useful work) can be very high.

C. Summary

We presented two levels of modeling and reward analysis to describe and evahmte the dynamic software

dependability behavior. The high-level modeling and reward analysis deals with distributed systems where multiple

instancesof operatingsystems interact,and was illustratedusing the Tandem/GUARDIAN and VAX/VMS data.

The low-levelmodeling focuseson errordetectionand recovery insidean operatingsystem,and was illusu'ated

using theIBM/MVS data. The resultsshow thatsoftwm'eisa significantsourceof servicelossinthe Tandem sys-

tem, while hardware isthedominant som'ceofservicelossintheVAXcluster. Although the measured Tandem sys-

tem isan experimentalsystem working under acceleratedstresses,the lossof servicedue to softwareproblems is

much smallerthan thatin themeasured IBM/MVS and VAX/VMS systems. FurtherevalualJonof theTandem sys-

tem shows thatsinglefailuretoleranceof theTandem system reducedthe servicelossdue to softwarefailuresby an

order of magnitude and the memory management software isa potentialreward bottleneck.The analysisof the

MVS datashows that,althoughfew softwareerrorscaused system failures,user-perceivedreliabilityand availability

islow becausemore than 40% of allsoftwareerrorsresultinuserjob/tasktermination.The MVS data alsoshows

thatmultipleerrors,which constituteover 17% of allsoftwareerrors,have long recovery times and hence can

impose a considerablesystem performancedegradation.
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VII. Error Correlation

When multiple instances of an operating systems interact with each other on a system, the issue of correlated

errors/failures should be addressed. An early study shows [Tang92b] that even a small failure correlation or a few

correlated failures can have a significant impact on system dependability. This section discusses software error

correlations in the VAXcluster and Tandem systems.

We found that about 10% of software failures occurred on multiple machines concurrently in VAX1. It is

instructive to examine these cases in det_ to understand how software failures occurred concurrently on different

machines. Figure 7.1 depicts a ease scenario. In the figure, Europa, Jupiter, and Mercury are machine names in

VAX1. A dashed line represents that the corresponding machine is in a failure state. At one time, a network error

(net1) was reposed from the CI (Computer Interconnect) port on Europa. This resulted in a software failure (soft1)

13 seconds later. Twenty-four seconds after the first network ea'ror (net1), additional network errors (net2,net3) were

reporled on the second machine (Jupiter), which was followed by a software failure (soft2). The error sequence on

Jupiter was _ (net4,net5,soft3) on the third machine (Mercury). The three machines experienced software

failures concurrently f_ 45.5 minutes. All three software failures occurred shortly after network errors occurred.

Thus, sometimes network-related hardware _" software problems cause concurrent software failures on multiple

machines.

Figure 7.1. A Scenario of Conemrent Software Failures

netl soR1

Europa 113 see. [ 47.83 rain.

reboot

net2 net3 soft2

Mercury I

Note:

60sP_.

47.33 min.

net4 net5 soft3 reboot

I , 111 see.I 45.5min. 14sec. [

softl, soft2, soft3 -- Exception while above ASTDEL or on interrupt stack.

netl, net3, net5 -- Port will be re-started, net2, net4 _ Virtual circuit timeout.

reboot
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TheVAXclusterdatashowsanotherdangerof network-relatederrorsin theformof hardware-related

software errors. If a software err_ (failure) occurs in close ixoximity (e.g., within a minute) to a hardware error, it

is referred to as a hardware-related software error (failure) [Iyer85a]. The occurrence of hardware-related software

errors can be explained in several ways. First, hardware errors can be detected by software. For instance, a

hardware error, such as a flipped memory bit, may change the software condition, causing a software error. This

software error can either be corrected by built-in software fault tolerance or result in a software failure. Second,

hardware errors can cause softwaxe failures by exercising parts of the operating system such as recovery routines

which are rarely used, thus activating dormant software faults.

Table 7.1 shows the total counts of hardware-related software errors and failures, and their percentages to all

errors and failures (including those caused by hardware), respectively, in the two VAXcluster systems. Each operat-

ing system was treated as an independent entity. The table shows that, out of 32 hardware-related software errors,

28 resulted in software failures, which shows the severity of hardwaxe-related software errors. Closer examination

of the data shows that network errors are responsible for most hardware-related software errors (75%).

Network errors are not only the major source of hardware-related software failures, but also related to a

significant portion of correlated machine failures which are not reported as software failures [TangO2b]. All these

failures are believed to occur in or relate to the network interface software in I/O management routines. Thus, we

speculate that the network-related software is a reliability bottleneck in the measured VAXcluster systems.

The Tandem GUARDIAN data shows that about 20% of the software halts occurred concurrently on multiple

operating systems. A significant portion of these concurrent software failures are believed to be related to software

development/testing efforts on the measured system. However, there were three occasions where software halts

occurring while the memory manager process was executing, resulted in system coldloads - restarts of all instances

of the operating system. In one case, a single software halt due to an illegal address reference by the memory

Table 7.1. Hardware-Related Software Errors (VAXclusters)

Measure Frequency Percentage

Error 32 18.9

Failure 28 21.4

30



managerprocess resulted in a system coldload. In the other two cases, software halts occurred near-coincidentally

on multiple Ixvcessors due to problems in accessing the system disk. Recall that each operating system on the Tan-

dem system relies on the system disk, which is accessed through either processor 0 or 1, for all additional operating

system related procedures and files. As a result, these two processors and the system disk are more important than

others from a dependability perspective. We believe that the high-stress environment of the measured system pro-

vided us with the rare opportunity to observe multiple component failure situations, and revealed this potential

dependability bottleneck, i.e., problems in accessing the system disk. This burden can be alleviated by duplicating

the procedures and files on another disk controlled by another pair of processors.

The above observations indicate that a failure of the measured Tandem system is likely to occur due to a sin-

gle severe software halt or due to concurrent software halts on multiple processors caused by common causes (not

due to a random coincidence of multiple independent software halts). Elimination of the underlying causes of these

severe software halts will improve the reliability of the overall software. However, it should be cautioned that this

study was based on an experiment on a Tandem system under accelerated stress. Further investigation is necessary

based on more experiments and experiments on field systems.

In this section, we investigated correlated software failures and hardware-related software errors in the meas-

ured VAXcluster and Tandem systems. Correlated failures can stress recovery and break the protection provided by

"single-failure" tolerance. To identify the sources of correlated failures is necessary for improving dependability.

Our results show that the network-related software of the VAX/VMS and the memory management of the

Tandem/GUARDIAN are potential software bottlenecks in terms of correlated failures. Providing additional fault

tolerance in software to resolve these bottlenecks will significantly improve the dependability of these systems.

Modeling of correlmed failures has not been well addressed in literature. Model specification for correlated failures

can be complex and additional stiffness may arise in the model solution because correlated failures are infrequent

events. The fact that about 10% of software failures on VAX1 and 20% of software failures on the Tandem system

occurred concurrently on multiple machines suggests that correlated failures cannot be neglected.

VIII. Conclusion
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In this paper, we demonstrated a methodology to model and evaluate the fault tolerance characteristics of

operational software. The methodology was illustrated through case studies on three different operating systems: the

Tandem/GUARDIAN system, the VAX/VMS system, and the IBM/MVS system. Measurements were made on

these systems for substantial periods to collect software error and recovery data. Major software problems and error

characteristics were identified by statistical analysis. A two level modeling approach was used to model and evaluate

error and recovery processes inside an openuing system and on multiple instances of an operating system running in

a distributed environment. Based on the models, reward analysis is conducted to evaluate the loss of service due to

software errors and the effect of fault-tolerance techniques implemented in the systems. Software error correlation

in multicompute_" systems is also investigated.

Results show that DO management and program flow control axe the major sources of software problems in

the IBM/MVS and VAX/VMS operating systems, while memory management is the major source of software prob-

lems in the Tandem/GUARDIAN operating system. Software errors tend to occur in bursts on both IBM and VAX

machines. This phenomenon is less lxonouncod in the Tandem system, which can be attributed to its fault-tolerant

design. The fault-tolerance in the Tandem system reduced its loss of service due to software failures by an order of

magnitude. Although the measured Tandem system is an experimental system working under acceleratod stresses,

the loss of service due to software problems is much smaller than that in the measured IBM/MVS and VAX/VMS

systems.

It is shown that the software Time To Error distributions obtained from the data are not simple exponentials.

This is in contrast with the common assumption of exponential failure times made in fault-tolerant software models.

Both the VAXcluster and Tandem data showed that a multicomputer software Time Between Error distribution can

be modeled by a 2-phase hyperexponential random variable: a lower rate error pattern which characterizes regular

errors, and a higher rate error pattern which characterizes error bursts and concurrent errors on multiple machines.

Investigation on error correlations found that about 10% of software failures in VAX1 and 20% in the Tandem sys-

tem occurred currently on multiple machines. It was suspected that the network-related software in the VAXcluster

and memory management software in the Tandem system are software reliability bottlenecks, in terms of concurrent

f_lures_
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It shouldbeemphasizedthattheresultsof this study should not be interpreted as a direct comparison between

the three measured operating systems, but rather an illustration of the proposed methodologies. The differences in

operating system architectures, instrumentation conditions, measurement periods, and operational environments

make a direct comparison impossible.
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